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Abstract 
Systematic literature reviews are the highest quality of evidence in research. However, the 

review process is hindered by significant resource and data constraints. The Literature Review 
Network (LRN) is the first of its kind explainable AI platform adhering to PRISMA 2020 
standards, designed to automate the entire literature review process. LRN was evaluated in the 
domain of surgical glove practices using 3 search strings developed by experts to query PubMed. 
A non-expert trained all LRN models. Performance was benchmarked against an expert manual 
review. Explainability and performance metrics assessed LRN's ability to replicate the experts’ 
review. Concordance was measured with the Jaccard index and confusion matrices. Researchers 
were blinded to the other's results until study completion. Overlapping studies were integrated into 
an LRN-generated systematic review. LRN models demonstrated superior classification accuracy 
without expert training, achieving 84.78% and 85.71% accuracy. The highest performance model 
achieved high interrater reliability (κ = 0.4953) and explainability metrics, linking 'reduce', 
'accident', and 'sharp' with 'double-gloving'. Another LRN model covered 91.51% of the relevant 
literature despite diverging from the non-expert’s judgments (κ = 0.2174), with the terms 'latex', 
'double' (gloves), and 'indication'. LRN outperformed the manual review (19,920 minutes over 11 
months), reducing the entire process to 288.6 minutes over 5 days. This study demonstrates that 
explainable AI does not require expert training to successfully conduct PRISMA-compliant 
systematic literature reviews like an expert. LRN summarized the results of surgical glove studies 
and identified themes that were nearly identical to the clinical researchers’ findings. Explainable 
AI can accurately expedite our understanding of clinical practices, potentially revolutionizing 
healthcare research. 
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1. Introduction 
During surgery, the aseptic barrier exists as the primary method to protect the operating 

room personnel from the patient and the patient from the clinical team. As part of what is known 
today as personal protective equipment (PPE), gloves provide the aseptic barrier and protection of 
the hands from potentially infectious materials being cross contaminated within the surgical field. 
However, despite the innovations seen in surgical glove raw materials and manufacturing, surgeons 
and nurses have known that glove damage during surgery occurs[1], [2].In fact, for over seven 
decades clinicians have reported and studied glove damage in surgery and have described from 
large, visible tears to microperforations, not visible to the human eye[3], [4], [5]. 

Nothing is more feared in surgical practice than the surgical site infection. The increase in 
morbidity and mortality for the patient, in addition to the increases in costs for the health care 
system, are well described in the literature. While glove damage during surgery is nearly 
impossible to link as a direct cause of surgical site infection due to a extensive list of confounders, 
the risk of infection causes surgical teams to take every precaution to decrease infection. 
Additionally, provider safety from contracting infectious disease was highlighted during historical 
pandemics such as HIV-Aids in the 1980s[6], [7] and recently with SARS-COV-19[8], [9], [10]. 
Additionally, more common viral pathogen such as hepatitis B and C are inherent risks for the 
reported 400,000 sharp injuries estimated per year[11]. Therefore, research such literature reviews 
are needed to understand the incidence, prevalence, time-lapse and potential causes of glove 
damage during surgery to improve the safety of the provider and patient. 

Systematic literature reviews (SLRs) are the gold standard in clinical and preclinical 
research, informing public policy, clinical guidelines, and R&D for medical devices and 
pharmaceuticals[12], [13]. In clinical practice, the use of systematic reviews and metanalysis guide 
the development of clinical practice guidelines, which direct practice change to achieve the best 
outcomes. Despite their importance, producing SLRs is challenging due to the sheer volume of 
research published annually, estimated at >1 million studies, leading to reporting biases and gaps 
in evidence[14], [15]. Furthermore, SLRs incur substantial financial burdens, with an average 
expenditure of approximately $141,194.80 per SLR, and a significant time investment of 
approximately 1.72 years per researcher[16]. Advances in natural language processing (NLP) and 
machine learning (ML), alongside web-based large language model (LLM) and artificial 
intelligence (AI) platforms, have been proposed to streamline the SLR process. These technologies 
aim to enhance data extraction and text classification, but they often fall short in automation, 
continuous updateability, and particularly in explainability—the ability for humans to understand 
and trust the decisions made by an AI to achieve its outputs[17], [18]. Current NLP-ML and AI 
solutions lack automation and explainability, and do not meet the rigorous standards of high-
quality research frameworks like Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) 2020[19]. This apparent lack of transparent and explainable processes in 
NLP-ML and AI applications for SLRs has notably contributed to hesitancy in their widespread 
adoption for clinical and preclinical research. 
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Addressing these concerns is the Literature Review Network (LRN), an innovative 
explainable AI (XAI) platform designed for SLRs, meta-analyses, and real-world data research. 
This study evaluated LRN’s effectiveness by comparing its accuracy and reliability to a traditional, 
human-conducted SLR. Specifically, we assessed LRN’s ability to achieve high overall model 
accuracy and interrater reliability, measured by Cohen’s kappa, with fewer iterations. To evaluate 
this XAI’s accuracy, our reference was a human SLR conducted by three subject matter expert 
(SME) researchers and six reviewers focusing on surgical glove damage and change frequency, 
completed without NLP-ML or AI assistance. This manual SLR was part of a larger study including 
4 SLRs conducted in parallel, with the objective being to determine the best available evidence to 
describe four key fundamental principles of surgical gloving practice: glove fit, double gloving, 
puncture indication, and glove change frequency. Additionally, the previous study queried clinical 
literature with multiple search strings and documented different search strategies. Therefore, the 
second aim of this study was to determine if an XAI could streamline the SLR process by finding 
similar insights on surgical gloving practice with fewer searches compared to conventional 
methods. This comparison aims to determine whether LRN can streamline the SLR process, 
achieving comparable insights with fewer searches and in less time. Lastly, this study aimed to 
evaluate an AI’s capability to summarize the literature with little to no instruction by an SME, 
approximating themes like those identified by SMEs. A qualitative assessment of the LRN-
generated SLR was done by this study’s surgical glove SMEs (TB, AE, JBR) to determine the 
similarities and differences between the human-identified and XAI-identified themes. 

2. Methods  

2.1 Search Strategy, Data Extraction, Review Procedures 
Based on the protocol and PICOT framework used for the human SLR, three human SMEs 

(TB, AE, JBR) initially formulated three separate search query strings that were used in this study. 
These search strings were then converted into LRN queries, as recorded in Table 1, and a set of 
concept rules which served as the basis for LRN’s reinforcement learning. Search strings were 
subjected to LRN version 2.0 (LRN v2.0), which employed a word embedding model that mapped 
concepts with the Unified Medical Language System (UMLS) Metathesaurus[20]. LRN processed 
each of these unique queries independently as three LRN models. These LRN models were 
configured to query the PubMed database for relevant literature, utilizing the PubMed API for data 
retrieval. Of the 262 studies that were identified and included in the manual SLR by the SMEs, the 
PubMed ID (PMID) was retrieved for only 212 studies. LRN’s screening mechanism involved the 
automatic ineligibility of records that either lacked an abstract, were published in Russian or 
Chinese, or were identified as duplicates. Russian and Chinese studies were excluded due to the 
former being a low-resource language, while the later presented complications related to accurate 
word segmentation with LRN[21]. Records that met the exclusion criteria were also automatically 
excluded by LRN (Table 1), and composed an out-of-domain or negative dataset to train LRN’s 
discriminative algorithms[22]. Levels of evidence considered were randomized controlled trials, 
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cohort studies, observational studies (retrospective and prospective), quasi-experimental studies, 
SLRs, and meta-analyses. 

LRN v2.0 operated within a reinforcement learning with human feedback (RLHF) 
framework. A non-SME in surgical gloving practice (JM) was responsible for training these three 
LRN models. When configuring this model and deriving the initial concept ruleset, the non-SME 
(JM) adhered to the protocol from the manual SLRs. The non-SME began the iterative learning 
process by first defining language rules associated with the INCLUDE and EXCLUDE classes 
(Table 2).  Studies were then classified as either INCLUDE or EXCLUDE based on the non-
SME’s feedback and LRN’s decisions. A RLHF loop initiated where LRN presented its findings 
with 20 labeled records. Per each iteration, the non-SME reviewed the performance metrics, word 
cloud, and correlation and coverage tables to assess LRN’s associations. Based on these 
associations, the non-SME modified the concept ruleset to add or remove rules. The non-SME 
then screened each record’s title and abstract, and provided feedback by assigning a label (e.g., 
INCLUDE or EXCLUDE). This assigned label was compared with LRN’s predicted classification 
label. For this literature review, each LRN model was trained for 4 total iterations, or 3 RLHF 
iterations.  

2.2 Explainable Artificial Intelligence Framework for Research 
LRN utilized a combination of a metaheuristic wrapper, weak supervision models, and 

discriminative algorithms. LRN first extracted natural language features from the corpus, with the 
wrapper optimizing feature selection for semantic analysis considering user-defined language 
rules. This metaheuristic wrapper feature selection technique reduced the complex feature space 
inherent to natural language data[23]. Weak supervision models in LRN operated under a matrix 
completion methodology and generated several rudimentary models from the concept ruleset. 
These models, despite their inaccuracies, can effectively label unstructured literature[24].  

 Discriminative models refined labels by analyzing consensus and discrepancies among 
weak models, effectively handling correlated labels from weak supervision sources without 
requiring labeled data[24]. Performance metrics of recall, precision, and F-score were 
automatically calculated by LRN for each label, in addition to the overall model accuracy and 
Cohen’s kappa. Additionally, LRN calculated potential scores for each record to balance 
exploration of new linguistic models and exploitation of established models and data structures for 
classification[25]. During RLHF, LRN presented 20 records with the highest potential score for 
feedback. Data visualizations and correlation tables were produced to clarify literature screening 
decisions for each iteration. The relationships between generative AI parameters were 
quantitatively assessed using Pearson’s chi-squared test, adjusted by Cramer’s V, and corrected for 
significance using the Benjamini-Hochberg method[26], [27], [28]. A LRN "AI Package Insert" 
for each search string documented all metrics and model decision-making processes. The highest 
performance model was identified by superior Cohen’s kappa and accuracy, while the optimally 
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balanced model was determined by the optimal balance of true positives to false negatives across 
search strings and iterations. 

2.3 Analysis of LRN Search Alignment with SME Review 
To critically appraise each search strategy and determine if LRN could effectively 

streamline the SLR process, the similarity was assessed between the three search strings and the 
SME-curated library. The unique reports from all three search strings were first pooled into a single 
corpus and deduplicated. The model with the highest Cohen’s kappa and overall accuracy from 
each search string was then used to classify the entire corpus. Non-SME feedback from all the 
models, which were the non-SME assigned labels for unique records, was incorporated into the 
dataset for classification by each string’s optimal model. PMIDs were used as the identifiers for 
comparing the SME-curated library and the LRN model classifications. Three sets of PMIDs 
corresponded with the three optimal models from each search string. Concordance between each 
LRN model’s predictions and the SME selections was done through the calculation of a Jaccard 
index for quantifying the overlap between studies classified as “INCLUDE” by each LRN model 
and those identified in the manual SLR[29]. Bootstrapping for 1 million replications was 
performed to determine the significance level of the similarity between the sets of PMIDs and the 
SME library. A Jaccard index was also calculated comparing each search string against the others 
to determine if there was significant overlap between, for example, search string 1 and search 
string 2, search string 1 and search string 3, and search string 2 and search string 3. P-values were 
adjusted using the Benjamini-Hochberg method[26]. Confusion matrices further explored the 
performance of the optimal models for each string in classifying the literature, providing coverage 
statistics on true positive (INCLUDE) and true negative (EXCLUDE) studies, as well as false 
positive and false negative cases.  

2.4 Text Summarization via LRN written SLRs 
In alignment with PRISMA 2020 guidelines, the optimally balanced model across all 

search strings was applied across the three search strings to classify the surgical glove corpus. This 
model automatically generated a PRISMA 2020 flow diagram detailing study identification, 
screening, and inclusion processes[30]. Classified ‘INCLUDE’ studies were prepared for 
summarization using an LLM that was based on OpenAI’s GPT-4-turbo[31]. LRN identified, 
labeled, and embedded full-text reports, which were then subjected to a series of user questions 
(Table 3). Full-text reports were formatted and embedded for further processing, utilizing 
Langchain’s Retrieval-Augmented Generation (RAG) technique to select relevant token segments, 
likelihood of data leakage and hallucinations was reduced[32]. LRN’s LLM merged its outputs 
into a single document, encompassing a LRN-generated SLR. Time to complete draft metric for 
the manual SLR quantified the cumulative human labor hours required for identifying, screening, 
assessing eligibility, and incorporating full-text reports. In contrast, this metric for the LRN models 
considered the total human labor hours needed to configure the three models (iteration 1), complete 
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the RLHF iterations for each model (iterations 2+), and the computation times for each LRN model 
to complete an iteration. Lastly, the three SMEs (TB, AE, JBR) reviewed the LRN-generated SLR 
to determine thematic similarities and differences. 

3. Results 

3.1 LRN Model Performance Metrics 
Optimal performance was achieved with search string 3, iteration 3, which yielded the 

highest performance model with an overall accuracy of 84.78% and a Cohen’s kappa of 0.4953 
(Table 4). This contrasts with the best-performing models from search string 1 iteration 2 and 
search string 2 iteration 3, which produced Cohen’s kappa values of 0.2174 and 0.0183 and overall 
accuracies of 85.71% and 58.62%, respectively. While string 1 engendered a model with 0.93% 
higher overall model accuracy than string 3, the EXCLUDE class performance metrics for string 
1 were suboptimal compared to string 3 (Tables 5-6). Improvements in precision and recall for the 
EXCLUDE class in the LRN model for string 3 iteration 3 demonstrated the model’s efficacy in 
filtering studies unrelated to the research aims, yet this was with a slight decrease in precision for 
the INCLUDE class (Table 5). Despite string 3’s superior performance, a notable decrease in 
average potential from 85.44% to 49.28% was observed, suggesting a reduction in semantic 
information retention across iterations for the string 3 model (Table 4). Four iterations were 
executed for all three models, with non-SME assigned labels for 92 unique records. However, by 
the fourth iteration, all models exhibited signs of underfitting with a set of new rules added by the 
user. Therefore, each model retained its learned associations up to the third iteration. Initially, 
search string 3 identified 284 potential studies for inclusion, with the validated optimal model 
ultimately selecting 149 full-text reports from that subset of the literature (Figure 1). Across the 
three search strings, a total of 810 studies were initially identified as candidates for inclusion. From 
this study, the highest performance model (search string 3 iteration 3) was discovered to not be the 
optimally balanced model for classifying the literature. Instead, the model from search string 1 
iteration 2 was determined to be the optimally balanced model. Thus, upon application of the 
optimal model from search string 1 iteration 2 to these records, 757 full-text reports were classified 
as ‘INCLUDE’ (Figure 2). 

As an XAI, LRN models elucidate their inclusion and exclusion decisions for the literature 
through visual representations (Figure 3) and detailed quantitative tables. These correlations 
guided LRN’s decision-making process. The highest performance model identified novel concepts 
in studies classified for inclusion, featuring terms such as ‘reduce’, ‘accident’, ‘sharp’, and 
‘double-gloving.’ Comparatively, the concepts uncovered by the optimally balanced model during 
RLHF are also depicted in Figure 3. Leveraging RLHF, LRN ingests human feedback through 
natural language rules and establishes semantic contexts for these rules by establishing correlations 
between two unique concepts or numerical measures. Specifically, when two unique rules 
exhibited a high correlation, it indicated that the LRN model had contextually associated these 
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terms as either co-occurring or related within the literature. The highest performance model (search 
string 3 iteration 3) identified significant correlations between concepts such as ‘nitrile’ and 
‘examination glove(s)’ (r = 0.601, p-value = 5.302E-13), ‘condom’ and ‘hand washing’ (r = 0.505, 
p-value = 3.716E-09), ‘polychloroprene’ and ‘nitrile’ (r = 0.495, p-value = 8.080E-09), and 
‘operation’ and ‘surgical glove(s)’ (r = 0.490, p-value = 1.052E-08). Additional significant 
correlations (p-value > 0.05) are documented in Table 7. For search string 1, the optimally 
balanced model identified significantly correlated rules such as ‘talc’ and ‘animals’ (r = 0.404, p-
value = 2.424E-12), ‘condom’ and ‘antibiotic prophylaxis’ (r = 0.397, p-value = 6.424E-12), ‘exam 
glove’ and ‘examination glove’ (r = 0.369, p-value = 2.710E-10), and ‘operation’ and ‘surgical 
gloves’ (r = 0.369, p-value = 2.710E-10). Based on the performance of the LRN model derived 
from string 1 iteration 2 (Table 4, Table 6), this model was considered as the optimally balanced 
model, and was later used to classify the surgical glove corpus. Statistically significant, pertinent 
rules and relationships guiding the optimally balanced model’s classifications are presented in 
Table 8. The optimal model from search string 2, which underperformed compared to the models 
from search strings 1 and 3, revealed correlations between ‘exam glove’ and ‘nitrile (glove)’ (r = 
0.495, p-value = 2.098E-11), ‘examination’ and ‘examination glove’ (r = 0.482, p-value = 8.306E-
11), ‘maxillofacial’ and ‘mandibular’ (r = 0.461, p-value = 6.203E-10), and ‘polychloroprene’ and 
‘exam glove’ (r = 0.401, p-value = 1.409E-07).  

3.2 LRN Productivity Metrics 
The optimal models for each search string were deployed on the total LRN corpus of 810 

studies. Of these 810 studies, a total of 194 identified studies could be found overlapping with the 
manual SME-curated library of 262 studies, of which 212 studies had PMIDs. From the LRN 
corpus of 810 studies, search string 1 classified 757 full-text reports, search string 2 classified 389 
full-text reports, and search string 3 classified 674 full-text reports as INCLUDE (Figure 4). 
Evaluation of the overlap between the three search strings, the manual SLR library revealed 
varying degrees of alignment: search string 2 exhibited the highest similarity (Jaccard index = 
0.3151, p-value = 3.000E-5). Search string 1 (Jaccard index = 0.2503, p-value = 3.538E-03) and 
search string 3 (Jaccard index = 0.2238, p-value = 3.538E-03) demonstrated reduced similarity 
(Table 9). Moreover, significant similarity was observed among the LRN search strings 
themselves. The overlap between search string 1 and search string 3 was the highest (Jaccard index 
= 0.8609, p-value < 1.000E-20), achieving nearly similar coverage of the literature. Lastly, 
moderate similarity was seen between search string 2 and search string 3 (Jaccard index = 0.4682, 
p-value < 1.000E-20) (Table 9). Search string 2 resulted in the highest number of false negatives, 
followed by search string 3 and search string 1 (Figure 4). Of note, the optimally balanced model 
from search string 1 classified the highest number of true positives (n = 194) yet had the highest 
number of false positives (n = 563) compared to the highest performance model from search string 
3 (Figure 4). As mentioned previously, search string 1 iteration 2 was used to classify the final set 
of studies, synthesized in the LRN-written SLR. 
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Total human labor time to conduct the complete manual SLR on surgical glove practices 
was 19,920 minutes, or 332 hours. The manual search and identification of the final list of abstracts 
occurred over 5 months, while the division and reading of a study’s full texts, evidence table 
generation, data analysis, and the manuscript creation took approximately 6 months. 
Comparatively, total human labor time to complete all three LRN models, to perform all similar 
analyses, and to generate a manuscript was 288.6 minutes, or nearly 4.81 hours, over the span of 
5 consecutive days. Computation time, separate from the human labor time, was 1810.7 minutes, 
or 30.18 hours, as itemized by search string by iteration in Table 10. 

4. Discussion 

4.1 Explainable AI Performed SLRs equivalent to Experts in Surgical Gloving 
Practice 

An observably high inter-rater reliability score (Table 4) from the LRN model trained on 
search string 3 iteration 3 coupled to a high overall accuracy demonstrated that LRN had the 
capacity to behave like a SME in screening and classifying the literature on surgical glove 
procedures (Figure 1). This LRN model was identified as the highest performance model and 
achieved high INCLUDE precision and recall (Table 5) despite receiving the fewest number of 
rules compared against the other two search strings (Table 2). However, a strategic trade-off 
occurred for string 3 which improved the EXCLUDE class precision at the expense of reducing 
the precision for the INCLUDE class, a well-characterized relationship in document retrieval[33]. 
Still, the reduction in precision for the INCLUDE class was minor relative to the EXCLUDE label, 
in exchange for all metrics for the EXCLUDE class to increase from 0% (Table 5). This rebalance 
validated the robustness for LRN models to screen the literature.  

Although search string 1 iteration 2 exhibited a marginally higher overall accuracy by 
0.93% compared to that of search string 3 iteration 3, it was at the expense of a reduction in both 
precision for the INCLUDE class and recall for the EXCLUDE class (Table 6). If search string 1 
were misattributed as the highest performance model due to its overall model accuracy alone, its 
low EXCLUDE recall would suggest that the deployed model would have failed to correctly 
exclude more studies based on the exclusion criteria[34]. Interestingly, this was observed with the 
higher count of false positives compared to the LRN model produced via search string 3 (Figure 
4). This comparison of the tabulated performance metrics across different search strings 
highlighted the importance of not solely relying on accuracy. Alternative metrics like Cohen’s 
kappa and potential provided deeper insights into a LRN model’s alignment with user evaluations 
and its proficiency to extract relevant information from the literature.  

LRN was initialized as a clean state XAI with the goal of maximizing overall accuracy, 
Cohen’s kappa, and average potential for any given research objective. User feedback during 
configuration, in the form of natural language rules and inclusion or exclusion criteria from the 



9 
 

non-SME (JM), was part of the RLHF framework that enabled an initialized LRN model to exploit 
information relevant to the research question. RLHF provided advantages such as the conservation 
of online computational resources by pre-computing optimal solutions offline based on 
incorporated feedback[35]. Conventional supervised ML models or supervised AI cannot exceed 
the performance of SMEs and can only mimic the behavior of an SME, as these systems learn 
from a training data set that is labeled by the SME[35]. This is in direct contrast to RLHF, which 
enabled LRN to exceed such benchmarks. Superior classification capabilities were observed for 
both search string 1 iteration 2 and search string 3 iteration 3, identifying key literature on surgical 
glove procedures (Tables 4-6). Of note was search string 3, which achieved high accuracy and 
high inter-rater reliability. The lack of SME training in all three models might have affected the 
interpretability of Cohen’s kappa. Integrating additional well-calibrated rules for INCLUDE and 
EXCLUDE classes from the SME may have minimized the risk of underfitting for all models, a 
tendency observed by the fourth iteration; however, LRN’s robustness was evident, with 
considerable accuracy achieved across search string 2 and search string 3. Remarkably, despite 
minimal alignment between non-SME user inputs and the LRN model classifications for string 2, 
a total of 194 out of 212 full-text reports were accurately identified as included studies within the 
SLR.  

Comparing the outputs of the LRN model SLR with the results of the manual SLR on 
double-gloving resulted in the identification of a striking capability of this new tool for researchers. 
Even though the human interface for the LRN network (JM) was not a trained clinician, nor did 
the non-SME understood the depth of the clinical issue surrounding glove damage during surgery, 
the simplicity of marking LRN derived abstracts as INCLUDE/EXCLUDE based on the 
overarching research question, matched the efforts and knowledge of the SME. While the 
researchers of the original manual process had the advantage of clinical experience and knowledge 
of specific connections between materials and surgical behavior to guide their search strategies, 
this was over come through LRN’s capability to identify relationships between terms in the 
literature and drawing inferences based on simple human feedback. The broader implications of 
these findings substantiate that SME training for LRN is not essential for LRN to achieve literature 
reviews equal in depth and accuracy of an SME. 

4.2 Explainable AI Identified Key Themes equivalent to Experts in Surgical 
Gloving Practice 

Pairing of non-SME provided rules included those such as ‘nitrile’ and ‘examination 
glove(s)’, both of which were classified by the non-SME and by LRN as EXCLUDE rules. The 
correlation between ‘condom’ and ‘hand washing,’ two EXCLUDE rules, presents an intriguing 
case; while individually relevant to latex material and practices associated with hygiene, 
respectively, their association was not directly pertinent to the core objectives of this study. These 
findings signify LRN’s ability to discern and explicitly identify concepts deemed irrelevant to the 
study’s objective. Moreover, the correlation between ‘polychloroprene’ and ‘nitrile’ across 
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INCLUDE and EXCLUDE categories, respectively, demonstrates LRN’s nuanced comprehension 
of these materials as alternative options for surgical gloves and showcases LRN’s mechanism for 
contextual differentiation. Furthermore, as presented through the visualization tools, the emphasis 
on ‘reduce,’ ‘sharp,’ ‘contaminate,’ ‘tear,’ ‘reinforcement,’ and ‘double-gloving’ as connected 
concepts and procedural measures for enhancing barrier protection between the clinician and the 
patient encapsulates LRN’s successful extraction of critical procedural insights from the literature 
(Figure 3). These inclusion concepts’ prominence within the model’s classification decisions 
aligned closely with the study’s investigative focus on surgical gloving practices. Through iterative 
feedback and rule adjustment, LRN demonstrated progressively enhanced specificity and reduced 
the inclusion of irrelevant studies. 

Semantic understanding in both explicit and implicit contexts is necessary for an AI model 
to adequately capture the predicate-argument structures of human language. Significant 
development with respect to this area has been undertaken for different neural network 
architectures[36]. Moreover, AI language models that leverage context-sensitive features present 
valuable applications in the fields of preclinical and clinical research and development[37], [38], 
[39], [40]. Two modalities LRN leverages to explain its decision-making processes are tabular 
methods and advanced visualization tools. LRN is the first XAI capable of semantic understanding 
while writing SLRs, conducting meta-analyses, and method development in both explicit and 
implicit contexts as highlighted by the predicate-argument relationships between concepts in Table 
7 and Table 8.  

After completion of the search methodology which accomplished the identification of the 
totality of articles selected through the original manual process, the final manuscripts were loaded 
into an LLM as a boundary condition and were asked to summarize the information (Table 3). 
Interestingly, three of the conclusions of the AI induced summary matched similar consensus 
statements derived from a group of surgeons and nurses completing the original systematic 
reviews. While not an original aim of this study, the XAI summary recommended the use of double 
gloving to reduce the risk of aseptic barrier breach, frequent changing of gloves during surgical 
procedures, especially in orthopedic surgery and that specific surgical procedures may require 
special considerations, such as suturing. These recommendations were like those proposed by 
experts in the field who had both practical personal experience as well as the benefit of reading 
the entire full text articles. Future studies using methods like BLEU should assess the accuracy of 
this XAI SLR compared to traditional methods[41].   

4.3 Explainable AI Improved Productivity and Streamlined SLRs with Fewer 
Searches 

In evaluating LRN’s effectiveness to replicate the manually conducted SLRs, it was 
observed that 194 records from LRN search strings overlapped with the 262 reports included in 
the manual SLR. Interestingly, following full text review by the manual reviewers described in the 
ground truth SLR, the 262 reports were reduced to a final count of 165 by their specific inclusion 
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and exclusion criteria. Thus, nearly all articles identified through a manual methodology including 
four databases (Pubmed, Embase, Google Scholar, Cochrane) were captured by LRN using 
PubMed alone. Search string 2 demonstrated the highest Jaccard index, which was attributed to a 
reduced number of false positives, yet it also exhibited the highest number of false negatives, 
missing 52 full-text reports (Figure 2). This discrepancy highlighted that search strings 1 and 3, 
showing a high degree of statistical similarity, could sufficiently cover the literature corpus for this 
study. Furthermore, search string 1 effectively covered 91.51% of the potential studies which 
overlapped with both LRN’s corpus and the manual SLR. Taken together, LRN evidenced that the 
use of both search string 1 and search string 2 was unnecessary for this study (Table 1). In addition, 
due to the high similarity between search strings 1 and 3, it can be hypothesized that further 
refinement of either string’s models would have rendered the use of one search string adequate. 
These results evince that the efficiency of LRN in literature identification, screening, and 
evaluation or inclusion (Figure 4) hinges on model training and validation, as evidenced by 
performance metrics, rather than the number of search strings employed (Tables 4, 7-9). 

By design, LRN prioritized minimizing false negatives to ensure comprehensive capture 
of relevant documents. This approach demonstrated the potential of SME involvement in training 
LRN models to significantly reduce false positives. A major limitation of this study was 
overreliance on PubMed, which led to a reduction in the number of potential studies retrieved from 
262 to 212, marking a 19.08% decrease. Furthermore, only 196 (92.45%) unique studies out of 
these 212 studies were covered by the three search strings, culminating in a total literature coverage 
of merely 74.81% of the library of 262 studies (Table 8). Expanding LRN’s database integration 
beyond PubMed could have potentially addressed this shortfall[42]. 

Increased computational capacity could lead to more efficient processing times, translating 
into a notable reduction in human labor hours required for SLR completion with LRN (Table 10). 
This efficiency not only streamlines the review process but also has the potential to lower 
associated costs. A thorough cost-benefit analysis of LRN’s implementation is essential to fully 
understand its impact on productivity and financial savings. Coupled with this cost-benefit analysis 
would be an assessment of LRN’s completeness and interpretability to validate the responses (e.g., 
complete SLRs) generated by LRN[43]. The substantial decrease in human labor time from 19,920 
minutes, or 332 hours over 11 months for the manual SLR to 288.6 minutes, or 4.81 hours over 
the span of a work week (5 days) for the LRN models exemplified the efficiency and productivity 
offered by employing XAI for SLRs. 

5. Conclusions 
LRN’s performance evinced that direct training by an SME was not imperative for it to 

achieve deep and accurate text classifications equivalent to an SME in surgical gloving practices. 
LRN is the first AI platform to offer explainability in tandem with text summarization as a core 
feature. Moreover, LRN as an XAI platform accurately and reliably demonstrated its ability to 
conduct SLRs while conforming to PRISMA 2020 guidelines.  After 4.81 hours of human labor 
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time, one highly accurate LRN model covered 91.51% of the accessible literature, and 74.81% of 
the entire corpus, from a SME-curated SLR library.  

A limitation in this study was the assumption that the current SME corpus is the ground 
truth. While this assumption served valuable for the purpose of this study’s aims, future validation 
of the LRN platform will require a prospective study. In a prospective study, human SMEs would 
need to review the results of LRN a priori to conducting a SLR. The UMLS controlled vocabulary 
system enabled LRN to map different concepts to unique identifiers and allowed cross-walking 
between different vocabulary systems such as MeSH and ICD-10. The LRN codebase should also 
be updated to improve automation efficiencies and to handle Russian and Chinese languages. 

LRN effectively streamlined SLR methodologies without sacrificing the scientific rigor 
necessary to achieve the high quality of evidence expected of SLRs. By offering a more accurate, 
precise, and transparent approach to conducting SLRs in healthcare, LRN’s current trajectory 
suggests significant advancements in automating and optimizing research. Moreover, LRN’s 
versatility allows it to encompass many fields within the life sciences and to generate other 
research such as meta-analyses, scoping reviews, accelerate method development, and produce 
evidence summaries. Future efforts will focus on expanding the number of databases LRN can 
access, paving the way for more comprehensive and up-to-date evidence syntheses in surgical 
practice and beyond. 
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Figures 

 

Figure 1 PRISMA 2020 flow diagram generated by LRN tracking data utilized to train and 
validate the Highest Performance LRN model. This flow diagram was automatically produced 
by LRN upon model finalization for the LRN model with the highest Cohen’s kappa. Data source 
was exclusively PubMed. “Records removed for other reasons” were those records excluded due 
to language restrictions, and "records deemed ineligible were based on the LRN translated 
exclusion criteria. “Records excluded” (n = 20) were records excluded during the human user 
screening phase. Preferred Reporting Items for Systematic Reviews and Meta-Analysis 
(PRISMA). 
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Figure 2. PRISMA 2020 flow diagram by LRN detailing a systematic literature review for 
the entire surgical glove corpus with the Optimally Balanced LRN model. A flow diagram 
auto-generated post-model finalization, with data sourced from PubMed. The optimally balanced 
LRN model was derived from search string 1 iteration 2; this deployed model was applied to the 
entire corpus from the 3 search strings. Exclusions were due to language filtration; ineligibility 
was based on the combined LRN translated exclusion criteria from 3 search strings. Abstracts with 
identifiable information (authors, PMIDs, publication date, key words) for the remaining 810 
records were exported by LRN to the user upon model finalization. Preferred Reporting Items for 
Systematic Reviews and Meta-Analysis (PRISMA). 
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Figure 3. Tag Clouds from the final iteration of two LRN models reveals key and novel 
insights into surgical gloving practices. These visualizations highlight associations identified by 
LRN within the literature, capturing both expected concepts aligned with SME perspectives and 
novel insights. These concepts include numerical values and measures, phrases, and acronyms, 
which were tagged utilizing LRN’s word embedding model. Size of the tag relates to the term 
frequency. Colors indicate relevance to classification: green for INCLUDE and red for 
EXCLUDE. Figure 3A = highest performance LRN model from search string 3, iteration 3; Figure 
3B = optimally balanced LRN model produced by search string 1, iteration 2.

A) 

B) 
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Figure 4. Confusion matrices comparing separate LRN models’ performance in text classification for surgical gloving practices. 
Classification outcomes of three LRN models, with optimal models from each search string. Total corpus was 810 full-text reports on 
surgical gloving practices. Search string 1 (iteration 2) was the optimally balanced LRN model, demonstrating superior ability to 
accurately classify the highest number of true include articles with the fewest false excludes (negatives). Highest performance LRN 
model (search string 3 iteration 3) identified more true exclude reports at the expense of misidentifying relatively more include reports.  
Comparatively, search string 2 (iteration 3) underperformed with the highest number of false excludes. 
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Tables 
Table 1. Search strategy configuration for LRN systematic literature review of surgical glove practices. 

 
Legend: Three separate search strategies employed through three separate LRN models. Adapted from PICOT used in manual literature 
reviews. Search strings were the original search strings, while exclusion search strings were the original search strings AND exclusion 
criteria. Translated queries were those inputted in LRN that were automatically converted into MeSH terms for PubMed REST API 
calls. 

Search String 
Number Search String Translated Query Exclusion Search String Translated Exclusion Query

1 ((surgical glove))) AND (((change))) AND 
(1980/01/01:2023/01/01[dp])

("gloves, surgical"[MeSH Terms] OR ("gloves"[All Fields] AND "surgical"[All Fields]) OR 
"surgical gloves"[All Fields] OR ("surgical"[All Fields] AND "glove"[All Fields]) OR "surgical 

glove"[All Fields]) AND ("change"[All Fields] OR "changed"[All Fields] OR "changes"[All Fields] 
OR "changing"[All Fields] OR "changings"[All Fields]) AND 1980/01/01:2023/01/01[Date - 

Publication]

(((surgical glove))) AND (((change))) AND 
(1980/01/01:2023/01/01[dp]) AND (((dentistry) 
OR (orthodontics) OR (veterinary surgery) OR 

(veterinary)))

("gloves, surgical"[MeSH Terms] OR ("gloves"[All Fields] AND "surgical"[All Fields]) OR 
"surgical gloves"[All Fields] OR ("surgical"[All Fields] AND "glove"[All Fields]) OR "surgical 

glove"[All Fields]) AND ("change"[All Fields] OR "changed"[All Fields] OR "changes"[All Fields] 
OR "changing"[All Fields] OR "changings"[All Fields]) AND 1980/01/01:2023/01/01[Date - 
Publication] AND ("dentistry"[MeSH Terms] OR "dentistry"[All Fields] OR "dentistry s"[All 

Fields] OR ("orthodontal"[All Fields] OR "orthodontic"[All Fields] OR "orthodontical"[All Fields] 
OR "orthodontically"[All Fields] OR "orthodontics"[MeSH Terms] OR "orthodontics"[All Fields]) 
OR ("surgery, veterinary"[MeSH Terms] OR ("surgery"[All Fields] AND "veterinary"[All Fields]) 
OR "veterinary surgery"[All Fields] OR ("veterinary"[All Fields] AND "surgery"[All Fields])) OR 

("veterinary"[MeSH Subheading] OR "veterinary"[All Fields]))

2 (((surgical glove))) AND (((perforation))) AND 
(1980/01/01:2023/01/01[dp])

("gloves, surgical"[MeSH Terms] OR ("gloves"[All Fields] AND "surgical"[All Fields]) OR 
"surgical gloves"[All Fields] OR ("surgical"[All Fields] AND "glove"[All Fields]) OR "surgical 
glove"[All Fields]) AND ("perforant"[All Fields] OR "perforants"[All Fields] OR "perforate"[All 

Fields] OR "perforated"[All Fields] OR "perforates"[All Fields] OR "perforating"[All Fields] OR 
"perforation"[All Fields] OR "perforations"[All Fields] OR "perforative"[All Fields] OR 
"perforator"[All Fields] OR "perforator s"[All Fields] OR "perforators"[All Fields]) AND 

1980/01/01:2023/01/01[Date - Publication]

(((surgical glove))) AND (((perforation))) AND 
(1980/01/01:2023/01/01[dp]) AND (((dentistry) 
OR (orthodontics) OR (veterinary surgery) OR 

(veterinary)))

("gloves, surgical"[MeSH Terms] OR ("gloves"[All Fields] AND "surgical"[All Fields]) OR 
"surgical gloves"[All Fields] OR ("surgical"[All Fields] AND "glove"[All Fields]) OR "surgical 
glove"[All Fields]) AND ("perforant"[All Fields] OR "perforants"[All Fields] OR "perforate"[All 

Fields] OR "perforated"[All Fields] OR "perforates"[All Fields] OR "perforating"[All Fields] OR 
"perforation"[All Fields] OR "perforations"[All Fields] OR "perforative"[All Fields] OR 
"perforator"[All Fields] OR "perforator s"[All Fields] OR "perforators"[All Fields]) AND 

1980/01/01:2023/01/01[Date - Publication] AND ("dentistry"[MeSH Terms] OR "dentistry"[All 
Fields] OR "dentistry s"[All Fields] OR ("orthodontal"[All Fields] OR "orthodontic"[All Fields] OR 
"orthodontical"[All Fields] OR "orthodontically"[All Fields] OR "orthodontics"[MeSH Terms] OR 

"orthodontics"[All Fields]) OR ("surgery, veterinary"[MeSH Terms] OR ("surgery"[All Fields] 
AND "veterinary"[All Fields]) OR "veterinary surgery"[All Fields] OR ("veterinary"[All Fields] 

AND "surgery"[All Fields])) OR ("veterinary"[MeSH Subheading] OR "veterinary"[All Fields]))

3
(((surgery and glove) OR (surgical glove))) 

AND (((puncture))) AND 
(1980/01/01:2023/01/01[dp])

((("surgery"[MeSH Subheading] OR "surgery"[All Fields] OR "surgical procedures, 
operative"[MeSH Terms] OR ("surgical"[All Fields] AND "procedures"[All Fields] AND 

"operative"[All Fields]) OR "operative surgical procedures"[All Fields] OR "general 
surgery"[MeSH Terms] OR ("general"[All Fields] AND "surgery"[All Fields]) OR "general 
surgery"[All Fields] OR "surgery s"[All Fields] OR "surgerys"[All Fields] OR "surgeries"[All 
Fields]) AND ("glove s"[All Fields] OR "gloved"[All Fields] OR "gloves, protective"[MeSH 

Terms] OR ("gloves"[All Fields] AND "protective"[All Fields]) OR "protective gloves"[All Fields] 
OR "glove"[All Fields] OR "gloves"[All Fields] OR "gloving"[All Fields])) OR ("gloves, 

surgical"[MeSH Terms] OR ("gloves"[All Fields] AND "surgical"[All Fields]) OR "surgical 
gloves"[All Fields] OR ("surgical"[All Fields] AND "glove"[All Fields]) OR "surgical glove"[All 
Fields])) AND ("punctured"[All Fields] OR "punctures"[MeSH Terms] OR "punctures"[All 

Fields] OR "puncture"[All Fields] OR "puncturing"[All Fields]) AND 
1980/01/01:2023/01/01[Date - Publication] 

(((surgery and glove) OR (surgical glove))) 
AND (((puncture))) AND 

(1980/01/01:2023/01/01[dp]) AND (((dentistry) 
OR (orthodontics) OR (veterinary surgery) OR 

(veterinary)))

((("surgery"[MeSH Subheading] OR "surgery"[All Fields] OR "surgical procedures, 
operative"[MeSH Terms] OR ("surgical"[All Fields] AND "procedures"[All Fields] AND 

"operative"[All Fields]) OR "operative surgical procedures"[All Fields] OR "general 
surgery"[MeSH Terms] OR ("general"[All Fields] AND "surgery"[All Fields]) OR "general 
surgery"[All Fields] OR "surgery s"[All Fields] OR "surgerys"[All Fields] OR "surgeries"[All 
Fields]) AND ("glove s"[All Fields] OR "gloved"[All Fields] OR "gloves, protective"[MeSH 

Terms] OR ("gloves"[All Fields] AND "protective"[All Fields]) OR "protective gloves"[All Fields] 
OR "glove"[All Fields] OR "gloves"[All Fields] OR "gloving"[All Fields])) OR ("gloves, 

surgical"[MeSH Terms] OR ("gloves"[All Fields] AND "surgical"[All Fields]) OR "surgical 
gloves"[All Fields] OR ("surgical"[All Fields] AND "glove"[All Fields]) OR "surgical glove"[All 
Fields])) AND ("punctured"[All Fields] OR "punctures"[MeSH Terms] OR "punctures"[All 

Fields] OR "puncture"[All Fields] OR "puncturing"[All Fields]) AND 
1980/01/01:2023/01/01[Date - Publication] AND ("dentistry"[MeSH Terms] OR "dentistry"[All 

Fields] OR "dentistry s"[All Fields] OR ("orthodontal"[All Fields] OR "orthodontic"[All Fields] OR 
"orthodontical"[All Fields] OR "orthodontically"[All Fields] OR "orthodontics"[MeSH Terms] OR 

"orthodontics"[All Fields]) OR ("surgery, veterinary"[MeSH Terms] OR ("surgery"[All Fields] 
AND "veterinary"[All Fields]) OR "veterinary surgery"[All Fields] OR ("veterinary"[All Fields] 

AND "surgery"[All Fields])) OR ("veterinary"[MeSH Subheading] OR "veterinary"[All Fields]))
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Table 2. Transparent, iteration-wise evolution of user-defined concept rules across search 
strings. 

 
Legend: LRN tracks decisions made by the user during screening by tracking each rule within the 
search strings, which are designated by user-assigned labels (INCLUDE or EXCLUDE). Each 
entry shows the iteration in which a rule was added, and, if applicable, subsequent iterations where 
it was removed and/or reinstated. For instance, for the rule “dentist” under search string 1, the ‘2,4 
/ 3’ indicates the rule was initially added in iteration 2, removed in iteration 3, and reinstated in 
iteration 4. Rules can take the form of numerical values, acronyms, terms, or phrases. 

Rule 
Number String 1 Rule String 1 

Label
Iteration 
Modified String 2 Rule String 2 

Label
Iteration 
Modified String 3 Rule String 3 

Label
Iteration 
Modified

1 contamination INCLUDE 1 contamination INCLUDE 1 contamination INCLUDE 1
2 latex INCLUDE 1 latex INCLUDE 1 latex INCLUDE 1
3 polyisoprene INCLUDE 1 polyisoprene INCLUDE 1 polyisoprene INCLUDE 1
4 polychloroprene INCLUDE 1 polychloroprene INCLUDE 1 polychloroprene INCLUDE 1
5 procedural INCLUDE 1 procedural INCLUDE 1 / 4 procedural INCLUDE 1
6 glove INCLUDE 1 glove INCLUDE 1 glove INCLUDE 1
7 operation INCLUDE 1 operation INCLUDE 1 operation INCLUDE 1
8 puncture INCLUDE 1 puncture INCLUDE 1 puncture INCLUDE 1
9 perioperative INCLUDE 1 perioperative INCLUDE 1 perioperative INCLUDE 1
10 perforation INCLUDE 1 perforation INCLUDE 1 perforation INCLUDE 1
11 experiment EXCLUDE 1 experiment EXCLUDE 1 experiment EXCLUDE 1
12 clean glove EXCLUDE 1 clean glove EXCLUDE 1 clean glove EXCLUDE 1
13 exam glove EXCLUDE 1 exam glove EXCLUDE 1 exam glove EXCLUDE 1
14 vinyl EXCLUDE 1 vinyl EXCLUDE 1 vinyl EXCLUDE 1
15 nitrile EXCLUDE 1 nitrile EXCLUDE 1 nitrile EXCLUDE 1
16 condom EXCLUDE 2 condom EXCLUDE 2 condom EXCLUDE 2
17 animal EXCLUDE 2 maxillofacial EXCLUDE 2 penetration INCLUDE 2
18 wash EXCLUDE 2 / 3 double gloving INCLUDE 2 needle penetration INCLUDE 2
19 surgical gloves INCLUDE 2 perforations INCLUDE 2 breach INCLUDE 2
20 talc EXCLUDE 2 indication system INCLUDE 2 hole INCLUDE 2
21 laboratory EXCLUDE 2 intermaxillary EXCLUDE 2 surgical gloves INCLUDE 2
22 dentist EXCLUDE 2, 4 / 3 arthroplasty INCLUDE 2 allergic INCLUDE 2
23 animals EXCLUDE 2 surgical gloves INCLUDE 2 barrier INCLUDE 2
24 antibiotic prophylaxis EXCLUDE 2 examine EXCLUDE 2 intra-operative INCLUDE 2
25 latex glove INCLUDE 2 examination EXCLUDE 2 surgical INCLUDE 2
26 double gloving INCLUDE 2 examination glove EXCLUDE 2 surgical glove INCLUDE 2
27 gloving method INCLUDE 2 vinyl glove EXCLUDE 2 examination glove EXCLUDE 2
28 allergy EXCLUDE 2 / 3 nitrile glove EXCLUDE 2 examination gloves EXCLUDE 2
29 vinyl glove EXCLUDE 2 barrier INCLUDE 2 double glove INCLUDE 2
30 dental EXCLUDE 2, 4 / 3 double-gloving INCLUDE 2 single glove INCLUDE 2
31 silicone EXCLUDE 2 animal EXCLUDE 2 punctures INCLUDE 2
32 solution EXCLUDE 2 dentistry EXCLUDE 2 latex gloves INCLUDE 2
33 allergenic EXCLUDE 2 veterinary EXCLUDE 2 double-gloving INCLUDE 2
34 culture EXCLUDE 2 orthodontic EXCLUDE 2 / 4 latex glove INCLUDE 2
35 antiseptic EXCLUDE 2 mandibular EXCLUDE 2 hand washing EXCLUDE 2
36 disinfectant EXCLUDE 2 rat EXCLUDE 2 / 4 washing EXCLUDE 2
37 chlorhexidine EXCLUDE 2 mouse EXCLUDE 2 / 4 penetrations INCLUDE 2
38 changing gloves INCLUDE 2 in vitro EXCLUDE 3 cultures EXCLUDE 2
39 dentists EXCLUDE 2 soap EXCLUDE 3 blood cultures EXCLUDE 2
40 glove perforations INCLUDE 2 dental EXCLUDE 3 / 4 culture EXCLUDE 2
41 immunization EXCLUDE 2 dentists EXCLUDE 3 washed EXCLUDE 2
42 examination gloves EXCLUDE 2 powder EXCLUDE 3 gloves INCLUDE 2
43 examination glove EXCLUDE 2 non-latex EXCLUDE 3 hospital INCLUDE 2
44 latex examination EXCLUDE 2 scrub nurse INCLUDE 3 hand wash EXCLUDE 2
45 glove change INCLUDE 2 scrub INCLUDE 3 / 4 puncture-resistant INCLUDE 3
46 nitrile examination EXCLUDE 2 / 3 glove powder EXCLUDE 3 laboratory EXCLUDE 3
47 nitrile glove EXCLUDE 2 detergent EXCLUDE 3 rat EXCLUDE 3
48 hand wash EXCLUDE 2 wash EXCLUDE 4 bacterial EXCLUDE 3
49 hand washing EXCLUDE 2 clinical INCLUDE 4 - - -
50 gloved INCLUDE 2 / 3 gloved INCLUDE 4 - - -
51 double glove INCLUDE 2 study INCLUDE 4 - - -
52 double-gloving INCLUDE 2 / 3 double gloves INCLUDE 4 - - -
53 single glove INCLUDE 2 gloving INCLUDE 4 - - -
54 hand rub EXCLUDE 3 change INCLUDE 4 - - -
55 washing EXCLUDE 3 gloves INCLUDE 4 - - -
56 hospital INCLUDE 3 postoperative INCLUDE 4 - - -
57 damage INCLUDE 3 glove reinforcement INCLUDE 4 - - -
58 asepsis INCLUDE 3 double INCLUDE 4 - - -
59 surgery INCLUDE 3 post mortem EXCLUDE 4 - - -
60 single-gloving INCLUDE 4 hand washed EXCLUDE 4 - - -
61 change gloves INCLUDE 4 procedures INCLUDE 4 - - -
62 alcohol-based EXCLUDE 4 surgical procedure INCLUDE 4 - - -
63 protective INCLUDE 4 perforated INCLUDE 4 - - -
64 barrier INCLUDE 4 penetration INCLUDE 4 - - -
65 operating room INCLUDE 4 - - - - - -
66 operating theater INCLUDE 4 - - - - - -
67 vinyl gloves EXCLUDE 4 - - - - - -
68 breach INCLUDE 4 - - - - - -
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Table 3. User submitted prompts to LRN for systematic literature review generation. 

 

Legend: LRN requires the user to submit at minimum 3 questions per generation of a systematic 
literature review (SLR), or other data product (e.g., a meta-analysis). For an SLR, prompts are 
divided into three sections: an introduction, results, and discussion. Prompts may contain single or 
multiple questions, direct instructions for desired contexts, and do not require proper grammar. A 
generation represents one version of the SLR produced by a set of questions submitted to LRN. 

  

Section Prompt Generation

Introduction
"What are the gaps in understanding the relationship between glove damage and the 

frequency of glove changes during various surgical procedures?"
1

Results

"What is the relationship between glove damage and the frequency of glove changes 
recommended during various types of surgical procedures? Are there established 

guidelines or specialty-specific recommendations for changing gloves during surgery 
to minimize the risk of glove damage and maintain sterility?  How does the incidence 
of glove damage correlate with the duration of surgical procedures, and what are the 
current best practices for glove change frequency to ensure patient and healthcare 

worker safety?"

1

Discussion
"How do the results of these studies contribute to the understanding of the optimal 

strategies for glove change frequency to minimize glove damage, and based on 
these studies what gaps or challenges remain in the field?"

1
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Table 4. Iterative performance metrics of LRN models across search strings. 

 

Legend: LRN models are configured with the goal to maximize the performance metrics—
Cohen’s kappa, overall accuracy, and average potential—for each search string across four 
iterations. The optimally balanced model (†) was search string 1 iteration 2, and the highest 
performance model, search string 3 iteration 3, is denoted by an asterisk (). Metrics reflect the 
integration of data up to the third iteration for each model, showcasing the cumulative 
improvement in performance. The highest performance model (*) was distinguished by its superior 
Cohen’s kappa and high overall accuracy. Per iteration, the titles and abstracts of 20 records were 
presented to the user for feedback. 

 

 

 

 

 

 

 

 

 

 

 

Search String Cohen's Kappa Accuracy Average Potential

String 1 0.1348 86.90% 33.62%
String 2 0.0000 89.66% 86.39%
String 3 0.0000 88.89% 85.41%

String 1 † 0.2174 † 85.71% † 43.99% †

String 2 0.0000 87.95% 83.39%
String 3 0.0000 84.78% 85.44%

String 1 0.0000 82.14% 85.06%
String 2 0.0183 58.62% 53.59%
String 3* 0.4953* 84.78%* 49.28%*

Iteration 1

Iteration 2

Iteration 3
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Table 5. Individual class metrics for highest performance LRN model. 

 

Legend: LRN model with the highest performance, identified in iteration 3 of search string 3. 
Improvements in recall and precision for the EXCLUDE label at the expense of initially reduced 
INCLUDE precision. 

 

Table 6. Individual class metrics for optimally balanced LRN model. 

 

Legend: LRN model with the highest number of true positives, denoted the optimally balanced 
LRN model, identified in iteration 2 of search string 1. Minor improvements in EXCLUDE recall 
with marginal reduction of INCLUDE precision after one RLHF iteration.

Label Recall Precision F-score
Iteration 1

INCLUDE 88.89% 100.00% 94.12%
EXCLUDE 0.00% 0.00% 0.00%

Iteration 2
INCLUDE 84.78% 88.89% 88.89%
EXCLUDE 0.00% 0.00% 0.00%

Iteration 3
INCLUDE 91.89% 89.47% 90.67%
EXCLUDE 55.56% 62.50% 58.82%

Label Recall Precision F-score
Iteration 1

INCLUDE 100.00% 86.75% 92.90%
EXCLUDE 8.33% 100.00% 15.38%

INCLUDE 100.00% 85.37% 92.11%
EXCLUDE 14.29% 100.00% 25.00%

Iteration 3
INCLUDE 100.00% 82.14% 90.20%
EXCLUDE 0.00% 0.00% 0.00%

Iteration 2
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Table 7. Significant concept rules guiding decision-making by the highest performance LRN model.  

 

Legend: Significantly correlated concepts were those with strong evidence (FDR-adjusted P-value < 0.001). FDR = false discovery rate 
(Benjamini-Hochberg method). Training and validation set consisted of 226 records screened by LRN for search string 3 iteration 3. 
Normalized chi-square values with Cramer’s V constrained values into a range of [0,1]. 

Rule 1 Rule 2 Rule 1 ClassRule 2 Class Correlation 
value

P-value 
(raw)

P-value (FDR-
adjusted)

Rule 1 Report 
Coverage

Rule 2 Report 
Coverage

nitrile examination glove EXCLUDE EXCLUDE 0.6009 1.170E-14 5.302E-13 9 / 226 10 / 226
nitrile examination gloves EXCLUDE EXCLUDE 0.6009 1.170E-14 5.302E-13 9 / 226 10 / 226

condom hand washing EXCLUDE EXCLUDE 0.5052 8.631E-11 3.716E-09 4 / 226 6 / 226
polychloroprene nitrile INCLUDE EXCLUDE 0.4954 1.971E-10 8.080E-09 1 / 226 9 / 226

operation surgical gloves INCLUDE INCLUDE 0.4901 3.054E-10 1.052E-08 136 / 226 69 / 226
operation surgical glove INCLUDE INCLUDE 0.4901 3.054E-10 1.052E-08 136 / 226 69 / 226

surgical gloves surgical INCLUDE INCLUDE 0.4901 3.054E-10 1.052E-08 69 / 226 136 / 226
surgical surgical glove INCLUDE INCLUDE 0.4901 3.054E-10 1.052E-08 136 / 226 69 / 226

contamination cultures INCLUDE EXCLUDE 0.4300 3.327E-08 1.061E-06 38 / 226 19 / 226
contamination culture INCLUDE EXCLUDE 0.4300 3.327E-08 1.061E-06 38 / 226 19 / 226

polychloroprene exam glove INCLUDE EXCLUDE 0.4020 2.424E-07 6.957E-06 1 / 226 6 / 226
polychloroprene examination glove INCLUDE EXCLUDE 0.4020 2.424E-07 6.957E-06 1 / 226 10 / 226
polychloroprene examination gloves INCLUDE EXCLUDE 0.4020 2.424E-07 6.957E-06 1 / 226 10 / 226
contamination blood cultures INCLUDE EXCLUDE 0.3946 4.011E-07 1.114E-05 38 / 226 10 / 226
exam glove nitrile EXCLUDE EXCLUDE 0.3904 5.311E-07 1.429E-05 6 / 226 9 / 226

nitrile latex glove EXCLUDE INCLUDE 0.3644 2.849E-06 7.432E-05 9 / 226 34 / 226
latex double glove INCLUDE INCLUDE 0.3611 3.520E-06 8.660E-05 49 / 226 40 / 226

double glove latex gloves INCLUDE INCLUDE 0.3611 3.520E-06 8.660E-05 40 / 226 49 / 226
double glove single glove INCLUDE INCLUDE 0.3573 4.451E-06 0.0001 40 / 226 17 / 226

surgical gloves double glove INCLUDE INCLUDE 0.3521 6.086E-06 0.0001 69 / 226 40 / 226
surgical glove double glove INCLUDE INCLUDE 0.3521 6.086E-06 0.0001 69 / 226 40 / 226

puncture blood cultures INCLUDE EXCLUDE 0.3490 7.339E-06 0.0002 167 / 226 10 / 226
punctures blood cultures INCLUDE EXCLUDE 0.3490 7.339E-06 0.0002 167 / 226 10 / 226

vinyl nitrile EXCLUDE EXCLUDE 0.3426 1.076E-05 0.0002 4 / 226 9 / 226
operation puncture INCLUDE INCLUDE 0.3356 1.622E-05 0.0003 136 / 226 167 / 226
operation punctures INCLUDE INCLUDE 0.3356 1.622E-05 0.0003 136 / 226 167 / 226
puncture surgical INCLUDE INCLUDE 0.3356 1.622E-05 0.0003 167 / 226 136 / 226
surgical punctures INCLUDE INCLUDE 0.3356 1.622E-05 0.0003 136 / 226 167 / 226

perforation surgical gloves INCLUDE INCLUDE 0.3279 2.526E-05 0.0005 58 / 226 69 / 226
perforation surgical glove INCLUDE INCLUDE 0.3279 2.526E-05 0.0005 58 / 226 69 / 226

contamination bacterial INCLUDE EXCLUDE 0.3160 4.922E-05 0.0009 38 / 226 18 / 226
penetration needle penetration INCLUDE INCLUDE 0.3158 4.978E-05 0.0009 14 / 226 58 / 226

needle penetration penetrations INCLUDE INCLUDE 0.3158 4.978E-05 0.0009 58 / 226 14 / 226
hole washing INCLUDE EXCLUDE 0.3122 6.080E-05 0.0010 22 / 226 9 / 226
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Table 8. Significant concept rules influencing text classification by the optimally balanced LRN model.  

 

Legend: Significantly correlated concepts were those with strong evidence (FDR-adjusted P-value < 0.001). FDR = false discovery rate 
(Benjamini-Hochberg method). Training and validation set consisted of 417 records screened by LRN for search string 1 iteration 2. 
Normalized chi-square values with Cramer’s V constrained values into a range of [0,1]. 

Rule 1 Rule 2 Rule 1 ClassRule 2 Class Correlation 
value P-value (raw) P-value (FDR-

adjusted)
Rule 1 Report 

Coverage
Rule 2 Report 

Coverage
 talc  animals EXCLUDE EXCLUDE 0.4041 6.120E-14 2.424E-12 3 / 417 6 / 417

animal  talc EXCLUDE EXCLUDE 0.4041 6.120E-14 2.424E-12 6 / 417 3 / 417
 condom  antibiotic prophylaxis EXCLUDE EXCLUDE 0.3969 1.687E-13 6.424E-12 14 / 417 42 / 417

 exam glove  examination glove EXCLUDE EXCLUDE 0.3685 7.665E-12 2.710E-10 4 / 417 14 / 417
 exam glove  examination gloves EXCLUDE EXCLUDE 0.3685 7.665E-12 2.710E-10 4 / 417 14 / 417
 operation  surgical gloves INCLUDE INCLUDE 0.3672 9.047E-12 3.088E-10 283 / 417 116 / 417
 latex glove  allergenic INCLUDE EXCLUDE 0.3636 1.434E-11 4.734E-10 48 / 417 13 / 417

 examination gloves  latex examination EXCLUDE EXCLUDE 0.3496 8.430E-11 2.608E-09 14 / 417 60 / 417
 examination glove  latex examination EXCLUDE EXCLUDE 0.3496 8.430E-11 2.608E-09 14 / 417 60 / 417

 contamination  culture INCLUDE EXCLUDE 0.3460 1.303E-10 3.909E-09 62 / 417 29 / 417
 latex  allergenic INCLUDE EXCLUDE 0.3312 7.681E-10 2.236E-08 83 / 417 13 / 417
 nitrile  examination glove EXCLUDE EXCLUDE 0.3266 1.309E-09 3.241E-08 7 / 417 14 / 417
 nitrile  examination gloves EXCLUDE EXCLUDE 0.3266 1.309E-09 3.241E-08 7 / 417 14 / 417

 examination gloves  nitrile examination EXCLUDE EXCLUDE 0.3266 1.309E-09 3.241E-08 14 / 417 7 / 417
 examination glove  nitrile examination EXCLUDE EXCLUDE 0.3266 1.309E-09 3.241E-08 14 / 417 7 / 417
 examination gloves  nitrile glove EXCLUDE EXCLUDE 0.3266 1.309E-09 3.241E-08 14 / 417 7 / 417
 examination glove  nitrile glove EXCLUDE EXCLUDE 0.3266 1.309E-09 3.241E-08 14 / 417 7 / 417

 antiseptic  chlorhexidine EXCLUDE EXCLUDE 0.3219 2.249E-09 5.430E-08 21 / 417 20 / 417
 talc  silicone EXCLUDE EXCLUDE 0.3102 8.316E-09 1.960E-07 3 / 417 7 / 417
 vinyl  hand washing EXCLUDE EXCLUDE 0.3009 2.285E-08 5.260E-07 13 / 417 11 / 417

 perforation  surgical gloves INCLUDE INCLUDE 0.2927 5.407E-08 1.216E-06 54 / 417 116 / 417
 perioperative  condom INCLUDE EXCLUDE 0.2825 1.546E-07 3.400E-06 26 / 417 14 / 417

 latex  vinyl INCLUDE EXCLUDE 0.2678 6.542E-07 1.408E-05 83 / 417 13 / 417
 perforation  double glove INCLUDE INCLUDE 0.2671 7.028E-07 1.450E-05 54 / 417 51 / 417
 perforation  double gloving INCLUDE INCLUDE 0.2671 7.028E-07 1.450E-05 54 / 417 51 / 417
 exam glove  latex examination EXCLUDE EXCLUDE 0.2631 1.027E-06 2.075E-05 4 / 417 60 / 417

 perioperative  antibiotic prophylaxis INCLUDE EXCLUDE 0.2588 1.535E-06 3.039E-05 26 / 417 42 / 417
 double gloving  single glove INCLUDE INCLUDE 0.2569 1.828E-06 3.480E-05 51 / 417 14 / 417
 double glove  single glove INCLUDE INCLUDE 0.2569 1.828E-06 3.480E-05 51 / 417 14 / 417

 antibiotic prophylaxis  chlorhexidine EXCLUDE EXCLUDE 0.2505 3.266E-06 6.100E-05 42 / 417 20 / 417
 animal  silicone EXCLUDE EXCLUDE 0.2499 3.465E-06 6.237E-05 6 / 417 7 / 417
 animals  silicone EXCLUDE EXCLUDE 0.2499 3.465E-06 6.237E-05 6 / 417 7 / 417
 solution  chlorhexidine EXCLUDE EXCLUDE 0.2207 4.150E-05 0.0007 25 / 417 20 / 417

 antibiotic prophylaxis  antiseptic EXCLUDE EXCLUDE 0.2202 4.306E-05 0.0007 42 / 417 21 / 417
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Table 9. Jaccard Index analysis for LRN search strings and subject matter expert-curated literature review library. 

 

Legend: Values indicate similarity levels, with a higher Jaccard index reflecting greater overlap. Significance is determined by p-values 
adjusted by the false discovery rate (FDR) using the Benjamini-Hochberg method. The highest observed overlap between search strings 
1 and 3 suggests substantial consistency in literature coverage. Subject matter expert (SME). 

  

Search String Comparison Set Jaccard Index P-value (raw) P-value               
(FDR-adjusted)

String 1 SME Library 0.2503 3.478E-03 3.538E-03
String 2 SME Library 0.3151 2.000E-05 3.000E-05
String 3 SME Library 0.2238 3.538E-03 3.538E-03
String 1 String 2 0.5059 <1.000E-20 <1.000E-20
String 1 String 3 0.8609 <1.000E-20 <1.000E-20
String 2 String 3 0.4682 <1.000E-20 <1.000E-20
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Table 10. Productivity metrics for human labor versus computational time for LRN literature review processes. 

 

Legend: Human labor time and computational run times for completing the systematic literature review on surgical glove practices 
using LRN. Start and end dates, as well as runtime start and runtime end (computation time), are reported in coordinated universal time 
(UTC) within 24-hour periods. Total human labor time involved configuring the LRN model for iteration 1; subsequent iterations (2+) 
involved incorporation of user feedback through screening 20 record’s abstracts and titles, and through modification of that string’s 
natural language concept ruleset.  

String (Date Start : End) Human Labor Time (min) Runtime Start (hr:min:sec) Runtime End (hr:min:sec) Total Runtime (hr:min:sec)

String 1 2023 / 12 / 24 : 2023 / 12 / 24 6.57 18:48:12 22:43:24 03:55:12
String 2 2023 / 12 / 23 : 2023 / 12 / 23 34.03 21:50:36 23:26:22 01:35:46
String 3 2023 / 12 / 25 : 2023 / 12 / 25 17.42 05:27:36 06:55:02 01:27:26

String 1 2023 / 12 / 25 : 2023 / 12 / 25 24.22 00:42:37 05:37:32 04:54:55
String 2 2023 / 12 / 24 : 2023 / 12 / 24 32.93 19:14:34 21:06:51 01:52:17
String 3 2023 / 12 / 26 : 2023 / 12 / 26 35.38 05:39:34 07:25:54 01:46:20

String 1 2023 / 12 / 26 : 2023 / 12 / 26 14.73 17:52:29 22:58:06 05:05:37
String 2 2023 / 12 / 25 : 2023 / 12 / 25 41.92 00:56:48 02:57:08 02:00:20
String 3 2023 / 12 / 28 : 2023 / 12 / 28 30.07 00:20:31 02:02:57 01:42:26

String 1 2023 / 12 / 27 : 2023 / 12 / 28 20.97 22:17:46 01:13:53 02:56:07
String 2 2023 / 12 / 28 : 2023 / 12 / 28 15.90 17:42:50 19:34:19 01:51:29
String 3 2023 / 12 / 28 : 2023 / 12 / 28 14.47 18:26:01 19:28:46 01:02:45

Total Human Labor Time (mins): 288.6 Total Computation Time (mins): 1810.7

Iteration 1

Iteration 2

Iteration 3

Iteration 4
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